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The piecewise constant symmetric potential
vorticity vortex in geophysical flows
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The concept of piecewise constant symmetric vortex in the context of three-
dimensional baroclinic balanced geophysical flows is explored. The pressure gradients
generated by horizontal cylinders and spherical balls of uniform potential vorticity
(PV), or uniform material invariants, are obtained either analytically or numerically,
in the general case of Boussinesq and f -plane dynamics as well as under the quasi-
geostrophic and semigeostrophic dynamical approximations. Based on the order of
magnitude of the different terms in the PV inversion equation, approximated PV
equations are deduced. In some of these cases, radial solutions are possible and
the interior and exterior solutions are found analytically. In the case of non-radial
dependence, exterior solutions can be found numerically. Linear, and upper and
lower bound approximations to the full PV inversion equations, and their respective
solutions, are also included. However, the general solution for the pressure gradient
in the vortex exterior does not have spherical symmetry and remains as an important
theoretical challenge. It is suggested that, in order to maintain everywhere the inertial
and static stability of the balanced geophysical flows, small balls of finite radius,
rather than PV singularities, could become, specially in numerical applications, useful
mathematical objects.

1. Introduction
The point vortex, as well as similar point singularities such as the point electric

charge and the point mass, is a simple but important theoretical model, useful in
understanding the behaviour of complex flows. The paradigm of a point vortex
occurs in two-dimensional flows of incompressible inviscid fluids, where the vorticity
is the relevant materially conserved quantity. Vortex multipoles may be considered,
in this case, as point singularities in the vorticity distribution (e.g. Lamb 1932;
Batchelor 1967; Saffman 1992; Voropayev & Afanasyev 1994). In the case of three-
dimensional rotating and stratified fluids, such as those in the ocean and atmosphere,
the relevant scalar quantity is the Beltrami–Rossby–Ertel potential vorticity (PV),
which is materially conserved when the flow is adiabatic and inviscid (Beltrami 1871;
Rossby 1940; Ertel 1942; Kurgansky & Tatarskaya 1987; Müller 1995; Viúdez 2001).
This material conservation and the fact that PV is unaffected by inertia–gravity waves
make PV an excellent physical quantity for investigating balanced (void of waves)
mesoscale and synoptic scale mid-latitude geophysical systems, where the flow is
both inertially and statically stable. The purpose of this paper is to investigate the
feasibility and utility of point singularities in the PV distribution in the dynamics of
these balanced geophysical flows.
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After a first look at the problem of defining the point PV vortex in balanced
geophysical flows, it becomes clear that this task is not merely a straightforward
application to baroclinic flows of the point concept used to define the point electric
charge, point gravity mass or point vortex in two-dimensional flows. The main
difficulty is that when the volume of a ball of PV is reduced while the PV density
is increased in such a way that the amount of PV inside the ball is kept constant,
the flow becomes inertially and statically unstable in the exterior vicinity of the PV
ball. When this happens, the flow departs from the balance regime in which PV is
most useful, since the PV singularities themselves would become a source of inertia–
gravity waves. This difficulty is circumvented here by abandoning the concept of
point PV vortex and introducing the concept of a small piecewise constant symmetric
PV vortex, or simply a PV ball, spherical in the quasi-geostrophic space, having a
small radius relative to the larger spatial scales of interest. For example, in numerical
applications, the PV ball radius could be smaller than the numerical grid size.

The basic dynamics and definitions of the relevant quantities are first briefly
introduced in § 2. The instability problems appearing in the definition of PV
singularities are then made precise in the case of a rectilinear horizontal PV cylinder
(§ 3). In this case, the geostrophic flow is an exact solution of the dynamical equations,
and an analytical solution of the pressure gradient in terms of the PV anomaly
is possible. The full nonlinear PV inversion equation in terms of the pressure is
introduced (§ 4), and the interior pressure solution for the PV ball is obtained,
whereas the exterior solution is found numerically. The same PV ball concept is
next investigated within the quasi-geostrophic (QG, § 5) and semi-geostrophic (SG,
§ 6) approximations, in which interior and exterior radial pressure solutions (i.e. with
spherical symmetry) are possible. These QG and SG radial solutions are already
known (Thorpe & Bishop 1994, 1995) and are included here for completeness and to
stress that the difficulty in finding a general exact solution is caused by its non-radial
property. The common variable used to compare these different dynamics is their
respective material invariants (the QG and SG material invariants), as well as the
PV of these flows. Based on the order of magnitude of the different terms in the
PV inversion equation, approximated PV equations are deduced (§ 7). In some of
these cases radial solutions are possible and the interior and exterior solutions are
found analytically. In the case of non-radial dependence, exterior solutions can be
found numerically. Linear, and upper and lower bound approximations to the full
PV inversion equations, and their respective solutions, are also included. Concluding
remarks are given (§ 8).

2. Basic dynamics and PV
We consider the isochoric (volume-preserving) motion of a stable stratified fluid,

under the Boussinesq approximation, in a reference frame rotating with constant
angular velocity f/2 around the vertical z-axis with respect to an inertial frame (the
f -plane approximation typical of mesoscale and synoptic scale dynamics). Here, f

is the vertical component of the planetary vorticity (or Coriolis parameter). It is
convenient to introduce the density anomaly ρ ′ defined as

ρ ′(x, t) ≡ ρ(x, t) − �0 z − ρ0, (2.1)

where x = (x, y, z), ρ is the mass density, and ρ0 > 0 and �0 < 0 are given constants
that need not be specified under the Boussinesq approximation. We introduce the
pressure anomaly P as the pressure p, plus a term f 2(x2 + y2)/(8ρ0) due to the
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planetary centripetal potential −f 2(x2 + y2)/8, minus the hydrostatic pressure due to
a constant vertical density stratification

P(x, t) ≡ p(x, t) + f 2(x2 + y2)/(8ρ0) + g
(
ρ0 + 1

2
�0z
)
z, (2.2)

where g is the acceleration due to gravity. The Boussinesq approximation in the
vertical component of the momentum equation is therefore

− 1

ρ
(pz + gρ) ∼= −α0 (pz + gρ) = −α0Pz − α0gρ

′, (2.3)

where α0 ≡ ρ−1
0 is a constant specific volume, and the subscript z means the partial

derivative with respect to z. Vector components here always refer to Cartesian
components. The basic equations are the non-hydrostatic balance of linear momentum
in a rotating frame under the f -plane and Boussinesq approximations, the mass
conservation equation, and the isochoric condition,

duh

dt
+ f k̂ × uh = −α0 ∇hP, (2.4a)

dw

dt
= −α0

∂P
∂z

− α0gρ
′, (2.4b)

dρ

dt
+ ρ ∇ · u = 0, (2.4c)

∇ · u = 0. (2.4d)

As usual, symbol d( )/dt ≡ ∂( )/∂t + u · ∇( ) denotes the material time derivative in

the rotating reference frame, and k̂ is the vertical unit vector. The unknowns are the
three-dimensional velocity field u = (u, v, w), the pressure anomaly P, and the density
anomaly ρ ′.

It is convenient to express ρ in terms of the field d defined by

d ≡ (ρ − ρ0)/�0. (2.5)

The value d(x, t) represents the depth, or vertical location, that the isopycnal located
at x at time t has in the reference density configuration defined by ρ0 + �0z. Thus,
the density field is expressed in terms of distances. The displacement D of isopycnals
with respect to the reference density configuration is defined as

D(x, t) ≡ z − d(x, t). (2.6)

The value D(x, t) is the vertical displacement of the isopycnal currently located
at (x, t) with respect to its reference position. The incompressibility condition
dρ/dt =dd/dt = 0 is expressed in terms of D as

dD
dt

= w. (2.7)

The vertical displacement of isopycnals D is related to ρ and ρ ′ by

N2(D(x, t) − z) = g (α0ρ(x, t) − 1) , D = − ρ ′

�0

, (2.8)

where N2 ≡ −α0 g�0 is the square of the constant background Brunt–Väisälä
frequency. Thus, the buoyancy term α0gρ

′ in (2.4b) can be replaced with N2D.
We note that static instability (∂ρ/∂z > 0) occurs when the stratification number
∂D/∂z > 1.
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For any quantity χ , let χ̃ ≡ χ/f . The geostrophic velocity shear is defined through
the thermal wind expression

ũg
z ≡ −c2 k̂ × ∇hD, (2.9)

where the background Prandtl ratio c = ε−1 ≡ N/f . Using (2.7), it follows that the
rate of change of ∇D is

d

dt
∇D = ∇w − ∇u · ∇D. (2.10)

The vorticity equation consistent with (2.4) is

dω̃

dt
= ω̃ · ∇u + uz + f c2 k̂ × ∇hD, (2.11)

where the relative vorticity ω ≡ ∇ × u = (ζ, ξ, η). The rates of change of ∇D (2.10) and
ω (2.11) imply the material conservation of PV

d�

dt
= 0, (2.12)

where

� ≡ Π − 1 ≡ (ω̃ + f k̂) · ∇d − 1 = ζ̃ − Dz − ω̃ · ∇D (2.13)

is the dimensionless PV density anomaly. Since the flow is isochoric, both PV density
(Π) and specific PV (Π/ρ) are materially conserved. If the spatial distribution of the
PV anomaly � (x) is known, and considering the vorticity ω̃(P(x)) and the vertical
displacement D(P(x)) as functions of the spatial derivatives of the unknown pressure
anomaly P, the PV definition (2.13) becomes an equation for P(x). This is called
the PV inversion problem, and is the major problem addressed in this paper in the
particular case of radial and homogeneous distributions of PV.

3. The straight line PV vortex
We consider first the simple steady straight shear flow because exact solutions of the

dynamical equations (2.4) can be obtained in this case, and this helps to understand
the characteristics of the PV ball in three dimensions. We consider straight horizontal
flow (u = w = 0) constant along the y-axis, so that the flow variables (v, D, P) depend
only on x and z. The flow is steady, in geostrophic balance, and hydrostatic. The
basic equations (2.4) reduce to

ṽ = Φx, (3.1a)

−c2D = Φz, (3.1b)

where, to simplify the notation, we define the scaled pressure anomaly

Φ(x, z) ≡ α0

f 2
P(x, z). (3.2)

It is also mathematically convenient to introduce the z-coordinate vertically
stretched by the background Prandtl ratio ẑ ≡ cz, which defines the QG space (x, ẑ).
The vertical vorticity, stratification anomaly, and the nonlinear terms in the definition
of PV (2.13) are

ζ̃ = ṽx = Φxx, (3.3a)

Dz = −ε2Φzz = −Φẑẑ, (3.3b)

ω̃ · ∇D = −ṽzDx + ṽxDz = −ΦxxΦẑẑ + Φ2
xẑ. (3.3c)
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This results in the relation between PV anomaly and pressure anomaly,

� = ∇̂2Φ +

∣∣∣∣∣Φxx Φẑx

Φxẑ Φẑẑ

∣∣∣∣∣ = ∇̂2Φ + Ĥ{Φ}, (3.4)

where ∇̂2 ≡ ∂2/∂x2 + ∂2/∂ẑ2 and Ĥ ≡ det ∇̂∇̂ are the Laplacian and the Hessian
operators, respectively, in the (x, ẑ)-space. The PV inversion equation above can be
further simplified by introducing the new potential

Ψ ≡ Φ + 1
2
r2, (3.5)

where the position vector r(x, ẑ) ≡ x ı̂ + ẑk̂ and r(x, ẑ) =
√

x2 + ẑ2. The potential Ψ

satisfies a Monge–Ampère equation,

Π = Ĥ{Ψ }. (3.6)

For radial PV distributions in the (x, ẑ)-space Π(r) = � (r) + 1, we assume radial
solutions Ψ (r), so that (3.6) becomes

Π =
ΨrΨrr

r
⇒ 2rΠ =

(
Ψ 2

r

)
r
. (3.7)

A first spatial integration of (3.7) from r ′ =0 to r ′ = r yields

2

∫ r

0

r ′� (r ′) dr ′ + r2 = Ψ 2
r (r), (3.8)

where we have taken Ψr (0) = 0 consistently with a finite Π and Ψrr 	= 0 at r = 0 in
(3.7).

We now specify that the radial PV anomaly distribution is everywhere zero except
inside a horizontal cylinder, limited by a circle of radius r0 and centred at the origin
of the (x, ẑ)-plane, where it has a constant value �0,

� (r) =

{
�0, r � r0,

0, r > r0.
(3.9)

With this PV anomaly distribution, the integral relation (3.8) provides the interior
(Ψir ) and exterior (Ψer ) solutions of Ψr ,

Ψr (r) =

{
Ψir (r) = r

√
Π0, r � r0,

Ψer (r) =
√

r2 + �0r
2
0 , r > r0,

(3.10)

where Π0 ≡ 1 + �0 is the total PV density inside the PV cylinder. The positive root
has been taken in (3.10) as a consequence of imposing inertial stability (ζ̃ > −1 in
the case of negative vorticity shear; see e.g. Holton 2004, p. 205) and static stability
(stratification anomaly Dz < 1) inside the PV cylinder(r � r0), that is

ζ̃ = Φxx = ±
√

Π0 − 1 > −1

Dz = −Φẑẑ = −(±
√

Π0 − 1) < 1

}
⇒ Ψir (r) = +r

√
Π0. (3.11)

The potential gradient Ψr is continuous at r = r0 where Ψir (r0) = Ψer (r0) = r0

√
Π0.

From (3.5) and (3.10) the gradient of Φ(r) is

Φr (r) = Ψr (r) − r =

{
Φri(r) = r(

√
Π0 − 1), r � r0,

Φre(r) =
√

r2 + �0r
2
0 − r, r > r0.

(3.12)

In the limit r → ∞, the external gradient Φre(r) tends to 0 as �0r
2
0/r .
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0 0.5 1.0 1.5 2.0 2.5
x

–2.5

–2.0

–1.5

–1.0

–0.5

0

0 0.5 1.0 1.5 2.0 2.5
x

–2.5

–2.0

–1.5

–1.0

–0.5

0

0 0.5 1.0 1.5 2.0 2.5
x

–2.5

–2.0

–1.5

–1.0

–0.5

0

z

(a) (b) (c)

Figure 1. Distributions in the (x, ẑ)-plane of (a) the vertical vorticity ζ̃ (contour interval
�= 10−2), (b) the nonlinear term ω̃ · ∇D (�= 2 × 10−3), and (c) the difference |ζ̃ | − |ω̃ · ∇D|
(�= 10−2). The cylinder radius r0 = 1 and PV anomaly �0 = 0.5. In this and subsequent similar
figures, solid contour lines indicate positive values, dashed lines negative, and the dotted line
is the zero contour.

Thus, the linear terms contributing to the PV anomaly are

ζ̃ =

⎧⎪⎨
⎪⎩

√
Π0 − 1, r � r0,

r4 + �0r
2
0 ẑ

2

r3
√

r2 + �0r
2
0

− 1, r > r0,
Dz =

⎧⎪⎨
⎪⎩

1 −
√

Π0, r � r0,

1 − r4 + �0r
2
0x

2

r3
√

r2 + �0r
2
0

, r > r0.
(3.13)

The flow is therefore everywhere statically stable (Dz < 1) as long as Π0 > 0. The
nonlinear term in the definition of the PV anomaly (3.3c) is

ω̃ · ∇D =

⎧⎪⎨
⎪⎩

−Π0 + 2
√

Π0 − 1, r � r0,

2r2 + �0r
2
0

r
√

r2 + �0r
2
0

− 2, r > r0.
(3.14)

The vertical vorticity ζ̃ (x, ẑ) is shown in figure 1(a) for a moderate positive PV
anomaly �0 = 0.5 and a PV cylinder radius r0 = 1. Inside the cylinder, ζ̃ � 0.22.
The stratification anomaly Dz has a distribution similar to ζ̃ and is not shown.
Remarkably, the vertical vorticity changes sign only in the upper region of the
bisectrix, approximately, where ζ̃ < 0 outside the cylinder. The vertical vorticity
continues positive outside the cylinder in the lower region. The nonlinear term ω̃ · ∇D
(figure 1b) has a radial distribution and is always positive outside the cylinder. This
nonlinear term is almost everywhere smaller than the linear terms |ζ̃ | and |Dz| (note
the different contour intervals in figures 1a and 1b). The exception occurs in the
region along the bisectrix, where ζ̃ � 0, and the nonlinear term is larger than |ζ̃ | and
|Dz| (see distribution of |ζ̃ | − |ω̃ · ∇D| in figure 1c). Thus, the relative importance of
the nonlinear terms in the PV definition depends not only on the smallness of the
Rossby number (which is here 0 since the flow is exactly geostrophic), but also on
the flow location relative to the shear zone.

The margin of static instability (Dz → 1) occurs inside the PV cylinder when
�0 → −1, which coincides also with the margin of inertial instability for negative
vorticity flow (ζ̃ → − 1). This situation is shown in figure 2 which displays the case
�0 = −0.99. The cylinder interior is close to the inertial and static instability, with
large horizontal gradients of ζ̃ at the surface (figure 2a), and large vertical gradients
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Figure 2. Distributions in the (x, ẑ)-plane, in the case of �0 = − 0.99, of (a) ζ̃ , (b) Dz, and
(c) the difference |ζ̃ | − |ω̃ · ∇D|. Contour interval �= 0.1.

of D below the vortex (figure 2b). The nonlinear term becomes now larger than |ζ̃ |
and |Dz| over a wider area around the PV cylinder (figure 2c) in comparison with
the case �0 = 0.5 (figure 1c). Positive �0 can increase limitlessly, though restriction
to inertially stable flows (|ζ̃ | < 1) implies the upper limit �0 = 3. In this work, we
consider static and inertially stable flows typical of mesoscale balanced geophysical
dynamics in which |� | < 1.

The pressure Φ(r) can be obtained from the integration of Ψr (r), (3.12), using the
integral rule ∫ √

x2 ± a2 dx = 1
2
x
√

x2 ± a2 ± 1
2
a2 ln

(
x +
√

x2 ± a2

)
, (3.15)

which is valid for positive and negative values of �0. The integration constant is
found from the continuity condition of Φ at r = r0, Φi(r0) = Φe(r0). Recovering the
pressure Φ from (3.5), the interior (Φi) and exterior (Φe) solutions for Φ are

Φ(r) =

⎧⎪⎨
⎪⎩

Φi(r) = 1
2
(
√

Π0 − 1)r2, r � r0,

Φe(r) = 1
2
(
√

r2 + �0r
2
0 − r)r + 1

2
�0r

2
0 ln

(
r +
√

r2 + �0r
2
0

r0(1 +
√

Π0)

)
, r > r0,

(3.16)
where a constant pressure Φ(0) has been omitted.

We may now define the PV intensity I0 of the PV cylinder as the amount of PV
anomaly inside a section of area A= πr2

0 of the PV cylinder with length π−1,

I0 = π−1

∫
A

� da = 2�0

∫ r0

0

rdr = �0r
2
0 . (3.17)

In order to obtain the potential Φl(r) of a line PV vortex, we take the limit of Φe(r)
when r0 → 0 and � → ∞ while the intensity I0 remains constant. From (3.16) this
limit is

Φl(r) = 1
2
(
√

r2 + I0 − r)r + 1
2
I0 ln

(
r +

√
r2 + I0√
I0

)
= Φl1 + Φl2. (3.18)

At short distances, for r/
√

I0  1, both terms in (3.18) contribute equally to Φl(r) in
a linear way,

Φl(r) � 1
2

√
I0r + 1

2

√
I0r =

√
I0r, r 

√
I0, (3.19)
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Figure 3. (a) The pressure potential Φl(r) (symbol Φ) of the line PV vortex with I0 = 0.5,
and the contributions Φl1 (Φ1) and Φl2 (Φ2) defined in (3.18). The asymptotes I0/4 (A) and
1
2
I0 ln(2r/

√
I0) (B) are included. (b) The corresponding pressure gradient Φlr (r) given by (3.20),

and the asymptote I0/r (A).

whereas at long distances, for r/
√

I0 � 1, the first term Φ converges asymptotically
to I0/4 and the second term tends to infinity as 1

2
I0 ln(2r/

√
I0) (figure 3a).

The dynamically relevant quantity, however, is the pressure gradient of the line PV
vortex Φlr , which is obtained from (3.12),

Φlr (r) =
√

r2 + I0 − r. (3.20)

In the limit r → ∞, the pressure gradient Φlr (r) tends to 0 as I0/r (figure 3b). The
important point is that, for (3.20) to be valid everywhere, I0 must be positive. This
severe restriction in the line PV vortex when I0 < 0 is related to the fact that as
�0 = I0/r2

0 → −∞ and r0 → 0 the total PV Π0 becomes negative, which is not allowed

by solution (3.10). At distances shorter than a critical rc =
√

−�0r
2
0 , the flow becomes

statically unstable and leaves the regime of balance flow. Thus, if the concept of
line PV vortex is to be useful to the balance dynamics, it seems that an alternative
approach is to impose a small but finite limit to the radius of the PV cylinders. This
approach may be particularly useful in computational fluid dynamics where the finite
amount of computational memory always imposes a finite numerical grid-size, and
therefore there is always a limited spatial resolution. PV cylinders with a finite radius
r0 smaller than the grid-size may be considered, for computation, as one-dimensional
lines. In the following sections similar ideas are developed in the most practical case
of PV spheres in three-dimensional space, which lead to the concept of small PV
balls.

4. The piecewise constant symmetric PV vortex
In this section, we consider the steady and horizontal motion of a three-dimensional

vortex in which the centripetal acceleration plus the Coriolis acceleration is equal
to the pressure gradient term (cyclostrophic balance). We use cylindrical coordinates
(r, φ, z), where now r2(x, y) ≡ x2+y2 must be distinguished from the polar coordinates
(r2(x, ẑ) ≡ x2 + ẑ2) used in the previous section. The dependent variables are the
transverse (azimuthal) velocity v, D and Φ , since the radial and vertical velocities
u =w =0. The flow satisfies (2.4) which in this case is reduced to the balance of



Piecewise constant symmetric potential vorticity vortex in geophysical flows 153

momentum along r , and the hydrostatic condition,

ṽ2

r
+ ṽ = Φr, (4.1a)

0 = Φz + c2D, (4.1b)

where, similarly to (3.2), we have defined the scaled pressure anomaly

Φ(r, z) ≡ α0

f 2
P(r, z), (4.2)

which includes the planetary centripetal potential term −r2/8.
The solutions of ṽ and D in terms of Φ(r, z) are

ṽ =
r

2

(√
1 + 4

Φr

r
− 1

)
, D = −ε2Φz, (4.3)

where the positive root in the expression for ṽ has been taken to ensure that ṽ =0
when Φr = 0. It is assumed therefore, for (4.1) to have real solutions, that 1+4Φr/r > 0.

In this three-dimensional case, the PV anomaly definition (2.13) of the k̂-axis
symmetrical vortex can be written in cylindrical coordinates (r, z) as

Π − 1 = � = ζ̃ − Dz − ξ̃Dr − ζ̃Dz, (4.4)

where ξ̃ = − ṽz is the radial component of vorticity. In terms of the pressure anomaly
Φ , the contributions to � are

ζ̃ =
1 + 3Φr/r + Φrr√

1 + 4Φr/r
− 1, (4.5a)

Dz = −Φẑẑ, (4.5b)

ξ̃Dr =
Φ2

rẑ√
1 + 4Φr/r

, (4.5c)

ζ̃Dz =

(
1 − 1 + 3Φr/r + Φrr√

1 + 4Φr/r

)
Φẑẑ. (4.5d)

Above we assume also that 1 + 4Φr/r 	= 0. In the particular case Φr = − r/4, the flow
ṽ = −r/2 is barotropic (independent of z) and the relative vorticity ζ̃ = −1, so that
ζ = −f , meaning that the fluid is motionless relative to the inertial reference frame.
Note that in this case Φr = −r/4 = −∂(r2/8)/∂r is due to the planetary centripetal
acceleration. The horizontal pressure gradient pr is zero.

The sum of the terms above leads to the relation between PV and pressure gradient,

Π

√
1 + 4

Φr

r
= 1 + Φrr + Φẑẑ + ΦrrΦẑẑ − Φ2

rẑ + 3
Φr

r
(1 + Φẑẑ) . (4.6)

Solution of this PV inversion equation is at the core of the piecewise constant
symmetric PV vortex problem. This equation can be written more compactly in terms
of the potential

Ψ ≡ Φ + 1
2
R2, (4.7)
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where R(r, ẑ) ≡
√

r2 + ẑ2 is the radius of the position vector in the (r, ẑ)-space. The
new potential Ψ (r, ẑ) satisfies the equation

Π

√
4
Ψr

r
− 3 = Ĥ{Ψ } + 3Ψẑẑ

(
Ψr

r
− 1

)
, (4.8)

where Ĥ{Ψ } ≡ ΨrrΨẑẑ−Ψ 2
rẑ is the Hessian operator in the (r, ẑ)-space. Another possible

choice for simplifying (4.6) is introducing

β(r, z̄) ≡ Φ(r, z̄) +
r2 + 2z̄2

8
, z̄ ≡

√
2 ẑ, (4.9)

which leads to

Π

√
βr

r
= H̄{β} + 3

βr

r
βz̄z̄, (4.10)

where H̄ is the Hessian operator in the (r, z̄)-space.
We now specify, in a way similar to what we did with the PV cylinder in the

previous section (see (3.9)), that the radial PV anomaly distribution is everywhere
zero except inside a sphere of radius R =R0, centred at the origin of the (r, ẑ)-plane,
where it has a constant value �0,

� (R) =

{
�0, R � R0,

0, R > R0.
(4.11)

In this case, (4.6) admits radial solutions Φ(R(r, ẑ)) = F (R) if

Π0

√
1 + 4

F ′

R
=

(
1 + 2

F ′

R

)2

+ F ′′ +
F ′

R

(
F ′′ − F ′

R

)(
1 +

3ẑ2

R2

)
. (4.12)

Therefore the condition F ′′ =F ′/R is related to a possible radial solution. This
solution corresponds to the interior solution Φi , that is with � = �0,

Φi(r, ẑ) = 1
2
C R2(r, ẑ), (4.13)

where a constant pressure has been omitted and the 1
2

is introduced to simplify further
mathematical expresions. The parameter C depends on �0 and can be obtained by
solving the polynomial equation resulting from substituting (4.13) into (4.12). After
rearrangement of terms, this substitution leads to

Π0

√
1 + 4C = (1 + C)(1 + 4C). (4.14)

Disregarding the solution C = −1/4, which corresponds to Φir = − r/4, (4.14) reduces
to the cubic equation

Π2
0 = (1 + C)2(1 + 4C), (4.15)

which has the solution

C(�0) = 1
4

(
3

√
1 + 8Π2

0 + 4Π0

√
1 + 4Π2

0 +
3

√
1 + 8Π2

0 − 4Π0

√
1 + 4Π2

0 − 3

)
,

(4.16)
with Π0 = �0 + 1.

In the vortex interior, the velocity ṽi depends linearly on r , and the vertical
displacement of isopycnals Di depends linearly on z,

ṽi(r, z) = 1
2
(
√

1 + 4C − 1)r, Di(r, z) = −Cz. (4.17)
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Thus, the interior fluid rotates as a solid body with angular velocity 1
2
(
√

1 + 4C − 1).
Consequently, the vertical vorticity and stratification anomaly are constant,

ζ̃i = ṽir +
ṽi

r
=

√
1 + 4C − 1, Diz = −C, (4.18)

and the shear vorticity (ṽir ) and the curvature vorticity (ṽi/r) equal the angular
velocity. We note that C(�0), as given by (4.16), increases monotonically from
C(−1) = −1/4, and therefore the interior flow remains always inertial and statically
stable as long as �0 > −1. The flow in the interior and exterior PV ball may however,
be, baroclinically unstable to three-dimensional wave perturbations (see Nolan &
Montgomery 2002). This type of instability is not considered here.

An analytical exterior solution Φe of (4.6), or in the modified expressions (4.8)
or (4.10), was not found. The main difficulty is that, owing to the nonlinear term
3ΦrΦẑẑ/r , the exterior solution does not have, unlike the interior solution, a radial
dependence.

Instead, (4.6) was numerically solved using an iterative procedure in a double
periodic domain with (nX, nZ) = (1024, 1024) grid points. The extent of the model
domain was {LX, LZ} =2π{c, 1}, with the Prandtl ratio c ≡ N/f = 10. The numerical
algorithm inverts the linear part of (4.6) in the spectral space, whereas the nonlinear
terms are computed in the physical space in every iteration. To avoid the abrupt
discontinuity in the PV anomaly distribution, we used a short cosine transition
window of 4 grid points, thus effectively using

� (R) =

⎧⎪⎨
⎪⎩

�0, R � R0,

1
2
�0 {1 + cos [(R − R0)π/δ]} , R0 < R < R0 + δ,

0, R � R0 + δ,

(4.19)

where the window width δ = 4 × 2π/nX .
The steady numerical solution Φe(r, ẑ) was confirmed through comparison with

the three-dimensional solution obtained using a numerical model based on the
full dynamics (2.4). The inviscid, non-hydrostatic, Boussinesq, f -plane model used
(Dritschel & Viúdez 2003) was initialized using the PV initialization approach (Viúdez
& Dritschel 2003), now necessary to avoid the initial generation of inertia–gravity
waves which are permissible in the non-hydrostatic dynamics. The non-hydrostatic
numerical model does not impose either steadiness or balance. Inertia–gravity waves,
however, are excluded from the numerical solution of (4.6) owing to the constraints
u = w = 0. We note that in a viscous fluid, large PV gradients, and therefore, large
vorticity gradients, would enhance momentum dissipation. In such fluids, however,
PV is not materially conserved and the approach of using ‘charges’ of PV that are
advected by the background flow is impracticable.

The four contributions to the PV anomaly (4.4) obtained from the numerical
solution are shown in figure 4. As occurs in the PV cylinder, ζ̃ (figure 4a) and Dz

(figure 4b) change sign only in the upper or lower half of the vortex boundary. The
nonlinear terms ξ̃Dr and ζ̃Dz (figure 4c) have, over the larger part of the domain,
a magnitude smaller than those of ζ̃ and Dz. However, ξ̃Dr has an extremum at
mid-depth just where ζ̃ and Dz are close to zero. This means that ξ̃Dr can be more
important than the linear terms, over some region at mid-depth, even for small Rossby
numbers.

The different contributions in the right-hand side of the PV inversion equation
(4.6) are shown as scatterplots (versus R) in figure 5. The larger contributions are
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(a) (b) (c)

Figure 4. Distributions in the (r, ẑ)-plane, in the case of a spherical vortex with �0 = 0.5 and
R0 = 0.5, of (a) ζ̃ (�= 2 × 10−2), (b) Dz (�= 2 × 10−2), and (c) the nonlinear terms −ξ̃Dr

(dashed contours, �= 5 × 10−3) and ζ̃Dz (solid contours, �= 5 × 10−3). Domain extent is
δr = δẑ = 1.5.
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Figure 5. Scatterplots versus R of (a) Φrr + Φẑẑ (×10), (b) ΦrrΦẑẑ − Φ2
rẑ (×102),

(c) 3(Φr/r)(1 + Φẑẑ) (×10), and (d ) 3(Φr/r) (×10).

due to the linear terms Φrr + Φẑẑ (figure 5a) and 3Φr/r (figure 5c). The large scatter
of Φrr + Φẑẑ at R � R0 = 0.5 (figure 5a), and to a smaller degree 3Φr/r (figure 5c),
is a consequence of the departure of Φe(r, ẑ) from radial solutions F (R). This is so
because if Φ(r, ẑ) = F (R(r, ẑ)), the Laplacian Φrr + Φẑẑ =F ′′ + F ′/R is a function of
R alone.

Once the analytical interior solution Φi and the numerical exterior solution Φe have
been found, these can be used to model dynamical systems of small PV balls. Given
a PV ball defined by a parameter pair (�0, R0), the pressure Φ , and therefore the
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induced fields of ṽ and D, relevant to the velocity and vertical location of the other
PV vortices, need only be computed once. The analytical external solution of (4.6)
remains, however, as an important theoretical challenge. In the next two sections,
we explore the PV ball vortex approach in the QG and SG approximations where
analytical interior and exterior solutions are possible.

5. Quasi-geostrophic dynamics

In the QG dynamics the dependent variables (velocity uq = uq
h + wq k̂, vertical

displacement of isopycnals Dq , and pressure anomaly Pq) obey the system of equations

dgug

dt
+ f k̂ × uq

h = −α0∇hPq, (5.1a)

0 = −α0Pq
z − N2Dq, (5.1b)

dgDq

dt
= wq, (5.1c)

∇ · uq = 0, (5.1d)

where ug ≡ (α/f )k̂ × ∇hPq is the geostrophic velocity, and dgχ/dt ≡ ∂χ/∂t + ug · ∇hχ is
the rate of change of χ relative to an observer moving with the geostrophic velocity.
Equation (5.1a) is the horizontal momentum equation with the approximation that
the local and advective accelerations are replaced with their respective geostrophic
expressions. Equation (5.1b) is the hydrostatic approximation, and (5.1c) is the mass
conservation with vertical advection neglected.

We note that, in principle, the QG variables (uq, Dq, Pq) are independent of the
variables (u, D, P) of the Boussinesq flow in the previous section, and therefore all
of them are labelled with a different superscript. Quantitative comparison between
results from different dynamics is, however, possible only when at least two variables,
one in every dynamical system, are assumed to take the same values. The choice of
this common variable is often the pressure anomaly P, though there is not any a
priori reason that forces us to do so. A natural choice in the case of this study of
PV vortices and PV inversion is the PV itself. In this respect, the geostrophic velocity
ug defined above differs also from the geostrophic velocity defined in the full or SG
dynamics. We omit, however, the superscript q in the geostrophic quantities to avoid
an excess of notation.

The rate of change of the dimensionless geostrophic vertical vorticity ζ g and
stratification anomaly Dq

z are both equal to the QG vertical velocity shear,

dgζ̃
g

dt
=

dgDq
z

dt
= wq

z , (5.2)

and the conservation of the QG invariant anomaly �
q
I follows

dg�
q
I

dt
= 0, �

q
I ≡ ζ̃ g − Dq

z = ∇2
h Φq +

∂2Φq

∂ẑ2
= ∇̂2Φq, Φq ≡ α0

f 2
Pq . (5.3a–c)

The term ‘QG invariant’ is used here to distinguish �
q
I , as defined in (5.3b), from

the PV anomaly of the QG flow, or QG PV, defined in the usual way from (2.13)
�q ≡ ζ̃ q − Dq

z − ω̃q · ∇Dq . Sometimes �
q
I is called the pseudo-PV or QG PV anomaly

(Charney 1971; White 2002; Holton 2004).
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In the case of an axis-symmetric horizontal vortex the QG equations (5.1) in
cylindrical coordinates reduce to

ṽg2

r
+ ṽq = Φq

r , (5.4a)

0 = Φq
z + c2Dq, (5.4b)

uq = wq = 0. (5.4c)

In this case the geostrophic velocity, vertical vorticity and stratification anomaly are

ṽg = Φq
r , ζ̃ g =

(rṽg)r
r

= ṽg
r +

ṽg

r
= Φq

rr +
Φq

r

r
, Dq

z = −Φ
q

ẑẑ. (5.5)

For its further use we obtain from (5.4) the QG velocity, and hence the QG vertical
vorticity, in terms of geostrophic quantities,

ṽq = ṽg − ṽg2

r
, ζ̃ q = ζ̃ g − 2ṽg

r

ṽg

r
, (5.6)

where the second term in every expression above can be interpreted as a small
correction to the corresponding geostrophic value.

Once the basic equations have been set, we address next the flow induced by balls
of constant QG invariant �

q
I as well as constant QG PV �q . The first case is relevant

in a QG dynamics of PV ball vortices (where �
q
I is a material invariant), whereas

the second case is useful as the QG approximation to the flow induced by PV ball
vortices in the Boussinesq dynamics (where the material invariant � � �q).

5.1. Flow generated by a sphere of constant QG invariant

The expressions (5.5) imply that the QG invariant anomaly (5.3b) is

�
q
I = Φq

rr +
Φq

r

r
+ Φ

q

ẑẑ. (5.7)

For a spherical distribution of �
q
I (R) in the vertically stretched space (r, ẑ), the �

q
I

inversion equation (5.3b) admits radial solutions

Φq(r, ẑ) = F (R), R2(r, ẑ) ≡ r2 + ẑ2, ⇒ �
q
I = F ′′ + 2

F ′

R
. (5.8a–c)

In the case of a ball of radius R0 with constant �
q
I = �0 the interior solution Φ

q
i and

its gradient Φ
q
i

′ are

Φ
q
i (R) = 1

2
C

q
I R2, Φ

q
i

′(R) = C
q
I R, C

q
I (�0) =

1

3
�0, (5.9a–c)

where an irrelevant pressure constant Φq(0) has been omitted (5.9a). The exterior
solution, outside the sphere where �

q
I = 0, is obtained from (5.8c), defining G ≡ F ′,

leading to a separable equation which can be integrated∫
dG

G
= −2

∫
dR

R
⇒ G(R) =

G0

R2
⇒ F (R) =

F0

R
+ F1. (5.10)

The integration constants are obtained by imposing continuity of Φq and Φq ′ at
R =R0, yielding the exterior pressure and pressure gradient solutions

Φq
e (R) = Φ

q

0 +
�0R

2
0

2
− �0R

3
0

3R
, Φq

e
′(R) =

�0R
3
0

3R2
. (5.11a, b)
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Figure 6. Distributions in the (r, ẑ)-plane, in the case of �
q
I = 0.5 and R0 = 0.5, of (a) ṽg

(max{ṽg} = 0.083, �= 5 × 10−3), (b) ṽq (max{ṽq} = 0.069, �= 5 × 10−3), and (c) the difference
ṽg − ṽq (max{ṽg − ṽq} = 0.014, �= 2 × 10−3). The dotted line indicates the location of the PV
vortex. Domain extent is δr = δẑ =1.5.

These QG interior and exterior solutions were obtained by Thorpe & Bishop (1994)
(also reproduced in Holton 2004, § 6.3.4). Using the chain rule χr = χ ′ ∂R/∂r = χ ′ r/R,
we obtain the geostrophic velocity and vertical vorticity

ṽg =

⎧⎪⎨
⎪⎩

�0

3
r,

�0R
3
0

3

r

R3
,

ζ̃ g =

⎧⎪⎪⎨
⎪⎪⎩

2�0

3
, R � R0,

�0R
3
0

3

1

R3

(
2 − 3r2

R2

)
, R > R0.

(5.12a, b)

The relations between QG and geostrophic quantities (5.6) can be written, using (5.9)
and (5.11), in terms of the constant QG invariant anomaly �

q
I =�0 as

ṽq =

⎧⎪⎪⎨
⎪⎪⎩

�0

3

(
1 − �0

3

)
r, R � R0,

�0R
3
0

3

r

R3

(
1 − �0R

3
0

3R3

)
, R > R0,

(5.13)

and

ζ̃ q =

⎧⎪⎪⎨
⎪⎪⎩

2�0

3

(
1 − �0

3

)
, R � R0,

�0R
3
0

3R3

(
2 − 3r2

R2

)
− 2

(
�0R

3
0

3R3

)2(
1 − 3r2

R2

)
, R > R0.

(5.14)

The interior QG vortex rotates therefore with an angular velocity equal to
�0(3 − �0)/9. The distributions of ṽg , ṽq and ṽg − ṽq for �

q
I = 0.5 and R0 = 0.5

are shown in figure 6. As can be deduced from (5.12a) and (5.13), ṽq differs from ṽg

in the interior and exterior of the vortex, the interior difference being ṽg − ṽq a solid
body rotation of angular velocity (ζ̃ g − ζ̃ q)/2 = (�0/3)2. This difference is independent
of the sign of � , so that cyclones (ṽq > 0) are always subgeostrophic and anticyclones
(ṽq < 0) are always supergeostrophic. In both cases ṽg > ṽq . The geostrophic and QG
vertical vorticity (figure 7a, b) are qualitatively similar to the vertical vorticity found
in the Boussinesq dynamics (figure 4a), with the change of sign happening only in the
upper half of the vortex. The ζ̃ q (figure 7b) has, however, a small relative extreme at
the surface close to the PV boundary that is not found either in the total ζ̃ or in ζ̃ g .
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Figure 7. Distributions in the (r, ẑ)-plane, in the case of �
q
0 = 0.5 and R0 = 0.5, of (a) ζ̃ g

(ζ̃ g ∈ [−0.17, 0.33], �= 2 × 10−2), (b) ζ̃ q (ζ̃ q ∈ [−0.062, 0.28], �= 2 × 10−2), and (c) the
difference �ζ̃ ≡ ζ̃ g − ζ̃ q (�ζ̃ ∈ [−0.11, 0.056], �= 5 × 10−3).

The external pressure gradient (5.11b) may be written as

Φq
e

′(R) =
I0

4πR2
, I0 ≡ 4

3
πR3

0�0, (5.15a, b)

where I0 is the amount of �
q
I inside the sphere. For a given I0, inertial and static

instability occurs, as R → 0 and �0 → ∞. For example, the ratio between centripetal
and Coriolis accelerations is

ṽg2/r

|ṽq | =
|ṽg|

|r − ṽg| < 1 ⇔ ṽg

r
< 1

2
⇔ �0 < 3

2
. (5.16)

Thus, for any I0, inertial instability occurs at distances shorter than R < 3
√

I0/(2π). In
terms of I0, the vertical vorticity and stratification generated by a point QG vortex
are

ζ̃ g = Dq
z =

I0

4πR3

(
3ẑ2

R2
− 1

)
=

I0

4πR3

(
2 − 3r2

R2

)
, (5.17)

which shows that static instability (Dq
z > 1) occurs at r = 0 at shallow depths |z| <

3
√

I0/(2π). Based on these instability arguments, the point QG vortex always generates
a flow incompatible with the dynamics of typical mesoscale balanced flows. It is in
this sense that the PV ball QG vortex may be more useful. In § 6, we will explore the
same concept, but in the SG dynamics.

5.2. Flow generated by a sphere of constant QG PV

In this case the constant value �0 inside the vortex corresponds to a constant QG
PV �q = �0 defined by (4.4) rather than to a constant value of the QG invariant �

q
I

defined by (5.3b). From (2.13) the PV anomaly of the QG flow is

�q = ζ̃ q − Dq
z − ξ̃ qDq

r − ζ̃ qDq
z . (5.18)

Using (5.5) and (5.6) the relation between πq and the QG pressure Φq is

Πq =
(
1 + Φq

rr + Φ
q

ẑẑ + Φq
rrΦ

q

ẑẑ − Φ
q2
rẑ

)(
1 − 2

Φq
r

r

)
+ 3

Φq
r

r

(
1 + Φ

q

ẑẑ

)
. (5.19)
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Figure 8. (a) The function f (C) = 2C3 − 3C + � , for � ∈ {−1, 0, 1}. (b) The coefficients
C(� ) (dashed line), C

q
I (� ) (continuous line), and Cq (� ) (dotted line).

Radial solutions Φq(r, ẑ) =F (R(r, ẑ)) must satisfy

Πq = [1 + F ′′ + G + G(F ′′ − G) + G2](1 − 2G) + 3G

(
G +

ẑ2

R2
(F ′′ − G) + 1

)
, (5.20)

where G ≡ F ′/R. Radial solutions are therefore possible as long as F ′′ =F ′/R, which
correspond to interior solutions

Φ
q
i (R) = 1

2
CqR2. (5.21)

Substituting (5.21) into (5.20) we obtain the equation for Cq ,

2Cq3 − 3Cq + �0 = 0. (5.22)

This depressed cubic equation has three different roots, corresponding to the three
solutions of the cubic root of a complex number. However, the only root related to
stable flow is the one closer to Cq = 0, which is the solution for �0 = 0 (see figure 8a).
This solution is

Cq(�0) =
√

2 cos
θ(�0) + i2π

3
, θ(�0) = arctan

√
2 − � 2

0

−�0

, −π � θ < π, (5.23)

where i =1 (�0 > 0) and i = 2 (�0 < 0). For small �0, the following approximation
and series expansions can be taken√

2 − � 2
0

�0

∼=
√

2

�0

, arctan x ∼= ±π

2
− 1

x
, (±x > 1), sin x ∼= x, (5.24)

leading to

Cq(�0) ∼=
√

2 cos

(
3π

2
+

�0

3
√

2

)
=

√
2 sin

(
�0

3
√

2

)
∼=

�0

3
, (5.25)

which is equal to the interior pressure generated by a ball of QG invariant �
q
I = �0

(5.9c). The three coefficients of the interior solution seen so far, the exact C, and the
QG coefficients C

q
I and Cq are plotted in figure 8(b) as functions of � . For |� | < 1

they are close to the QG slope equal to 1/3.
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6. Semi-geostrophic dynamics
In the SG dynamics (Eliassen 1949; Fjortoft 1962; Hoskins 1975; Hoskins &

Draghici 1977) the SG dependent variables (us, Ds, Ps) satisfy

dsug

dt
+ f k̂ × us = −α0∇hPs, (6.1a)

0 = −α0Ps
z − N2Ds, (6.1b)

dsDs

dt
= ws, (6.1c)

∇ · us = 0, (6.1d)

where the geostrophic velocity ug ≡ (α0/f )k̂ × ∇hPs , and dsχ/dt ≡ ∂χ/∂t + us · ∇χ is
the rate of change of χ experienced by an observed flow moving with the SG velocity
us . In the steady horizontal flow of a spherical vortex, and in cylindrical coordinates,
(6.1) reduce to

ṽs ṽg

r
+ ṽs = Φs

r , (6.2a)

Ds = −ε2Φs
z , (6.2b)

us = ws = 0, (6.2c)

where the geostrophic velocity ṽg = Φs
r . The relation between ṽs and ṽg in the SG

dynamics is therefore

ṽs = ṽg

(
1 +

ṽg

r

)−1

, (6.3)

where we assume ṽg 	= −r , that is, Φs
r 	= 0 except at r =0.

The relations between the SG vertical vorticity and stratification anomaly as a
function of the SG pressure are

ζ̃ s = ṽs
r +

ṽs

r
=

(
1 +

Φs
r

r

)−2 [
Φs

rr +
Φs

r

r

(
1 + 2

Φs
r

r

)]
, (6.4a)

Ds
z = −Φs

ẑẑ. (6.4b)

These expressions are used next to express the SG invariant and SG PV as a function
of Φs .

6.1. Flow generated by a sphere of constant SG invariant

The material invariant of the SG flow (Hoskins 1975) can be interpreted in terms of
the vorticity–velocity gradient cofactor tensor (Viúdez 2005) and expressed in tensor
notation as

Πs
I ≡ ∇ds · Ξ s · k̂, (6.5)

where Ξ s is the SG approximation to the vorticity–velocity gradient cofactor tensor.
This SG tensor is defined as

Ξ s ≡ (ω̃g + k̂)k̂ + 1
2
∇ũg ×

× ∇ũg. (6.6)

The second term on the right-hand side in (6.6) is the cofactor tensor of ũg , sometimes
also denoted as ∇ũg . For two vectors a and b whose Cartesian components are
(a1, a2, a3) and (b1, b2, b3), respectively, we define the double-cross-product of tensors
∇a = ∇ai êi = êi a,i and ∇b = ∇bj êj = êj b,j (summation convention assumed) as

∇a ×
× ∇b = ∇ai × ∇bj êi × êj = êi × êj a,i × b,j , (6.7)
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where the comma-subindex notation indicates the partial derivative (χ,1, χ,2,
χ,3) = (χ,x , χ,y, χ,z) = (∂χ/∂x, ∂χ/∂y, ∂χ/∂z). This term involves the cross-products
of the gradients of the components of a and b along different directions.

In the case of the spherical vortex, the cofactor of ∇ũg may be obtained directly
from ∇ũg in cylindrical coordinates,

1
2
∇ũg ×

× ∇ũg = ṽg
r

ṽg

r
k̂k̂ − ṽg

z

ṽg

r
r̂ k̂. (6.8)

The above result can also be obtained in Cartesian coordinates using ũg = ũ
g

1 ı̂ +

ũ
g

2 ĵ = ṽg k̂ × r̂ =(−y, x)ṽg(r(x, y), z)/r(x, y), and the chain rule to obtain the cofactor

tensor in Cartesian coordinates from 1
2
∇ũg ×

× ∇ũg = (∇ũ
g

1 × ∇ũ
g

2)k̂. Thus, for an axis-
symmetrical vortex, the SG invariant in cylindrical coordinates is

Πs
I = 1 + ζ̃ g − Dz − ξ̃ gDr − Dzζ̃

g (6.9)

+ ṽg
r

ṽg

r
(1 − Dz) + ṽg

z

ṽg

r
Dr .

Using (6.3) and (6.4), we replace the terms above by their expressions as functions of
the SG pressure Φs which yields

Πs
I =
(
1 + Φs

rr + Φs
ẑẑ + Φs

rrΦ
s
ẑẑ − Φs2

rẑ

)(
1 +

Φs
r

r

)
. (6.10)

As usual, we look for radial solutions Φs(r, ẑ) = F (R(r, ẑ)) which must now satisfy

Πs
I =

[
1 + F ′′ +

F ′

R

(
1 + F ′′ − F ′

R

)
+

(
F ′

R

)2
](

1 +
F ′

R

)

= (1 + F ′′)

(
1 +

F ′

R

)2

. (6.11)

The above equation admits therefore radial solutions for both the interior and exterior
vortex. The interior solutions Fi(R) ≡ Cs

IR
2/2 imply F ′′

i =F ′
i /R = Cs

I and therefore

Φs
i (R) = 1

2
Cs

IR
2, Cs

I (�
s
I ) = 3

√
1 + �s

I − 1. (6.12a, b)

where �s
I ≡ Πs

I − 1 is the SG invariant anomaly.
To find the exterior solution (Πs

I =1), we define the auxiliary function h(R) ≡
1 + F ′(R)/R, in terms of which (6.11) is rewritten as

1 = h3 + h2h′R. (6.13)

This equation is separable and can be integrated,∫
dR

R
=

∫
h2

1 − h3
dh, (6.14)

yielding

h(R) = 3

√
1 + �s

I

(
R3

0/R
3
)
. (6.15)

The integration constant has been used to impose continuity of the internal F ′
i and

external F ′
e solutions at R = R0. Finally, the solution for the SG pressure gradient
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Φs ′(R) = F ′(R) is

Φs ′(R) =

⎧⎨
⎩

Φs
i

′(R) =
(

3
√

1 + �s
I − 1

)
R, R � R0,

Φs
e

′(R) =
(

3

√
1 + �s

I

(
R3

0/R
3
)

− 1
)

R, R > R0,
(6.16)

which is the solution found by Thorpe & Bishop (1995) and related to that given by
Shutts (1991). The SG velocity associated to a Πs

I sphere of radius R0 is obtained
from (6.3),

ṽs(r, ẑ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ṽs
i (r, ẑ) =

(
1 − 1

3
√

1 + �s
I

)
r, R � R0,

ṽs
e(r, ẑ) =

⎛
⎝1 − 1

3

√
1 + �s

I

(
R3

0/R
3
)
⎞
⎠ r, R > R0,

(6.17)

The geostrophic velocity is easily obtained from the fact that ṽg/r = Φs
r /r =Φs ′/R,

and hence the SG vorticity from (6.4a),

ζ̃ s(r, ẑ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ζ̃ s
i (r, ẑ) = 2

(
1 − 1

3
√

1 + �s
I

)
, R � R0,

ζ̃ s
e (r, ẑ) = 2

⎛
⎜⎜⎝1 − 1

3

√
1 + �s

I

R3
0

R3

⎞
⎟⎟⎠− �s

I R3
0r

2

R5
(
1 + � 2

I

(
R3

0/R
3
))4/3 , R > R0.

(6.18)
The relation between the geostrophic vorticity of the SG dynamics and the pressure
gradient anomaly is

ζ̃ g = Φs
rr +

Φs
r

r
= 2

F ′

R
+

r2

R2

(
F ′′ − F ′

R

)
, (6.19)

which, from (6.16), leads to the solution

ζ̃ g(r, ẑ) =

⎧⎪⎪⎨
⎪⎪⎩

ζ̃
g
i = 2

(
3
√

1 + �s
I − 1

)
, R � R0,

ζ̃ g
e = 2

(
3
√

1 + �s
I (R0/R) − 1

)
− �s

I

3

R0r
2

R3
(
1 + �s

I (R0/R)
)2/3 , R > R0.

(6.20)

The SG vertical vorticities ζ̃ s and ζ̃ g , and the difference ζ̃ s − ζ̃ g are plotted in figure 9.
These are qualitatively similar to the corresponding QG quantities (figure 7). In the
SG case, ζ̃ s has also a relative extremum at the surface (figure 9b).

In a similar way, we obtain the stratification anomaly of the SG dynamics,

Ds
z = −Φs

ẑẑ = −F ′

R
− ẑ2

R2

(
F ′′ − F ′

R

)
, (6.21)
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Figure 9. Distributions in the (r, ẑ)-plane, in the case of �s
I =0.5, of (a) ζ̃ s (�= 10−2),

(b) ζ̃ g (�= 10−2), and (c) the difference ζ̃ s − ζ̃ g (�= 4 × 10−3).

and finally, from (6.16), the stratification anomaly in terms of the SG invariant
anomaly,

Ds
z(r, ẑ) =

⎧⎪⎨
⎪⎩

Ds
zi = 1 − 3

√
1 + �s

I , R � R0,

Ds
ze = 1 − 3

√
1 + �s

I

(
R3

0/R
3
)

+
�s

I R3
0 ẑ

2

R5
(
1 + �s

I

(
R3

0/R
3
))2/3 , R > R0,

(6.22)

where Ds
ze above has been expressed so as to easily check its continuity with Ds

zi at
(r, ẑ) = (R0, 0). Clearly, static instability (Ds

z > 1) occurs in the vortex interior when
�s

I < −1.

6.2. Flow generated by a sphere of constant SG PV

From (2.13), the PV anomaly of the SG flow is

�s = ζ̃ s − Ds
z − ξ̃ sDs

r − ζ̃ sDs
z. (6.23)

Using (6.4) and the fact that

ξ̃ sDs
r =

(
1 +

Φs
r

r

)−2

Φs2
rẑ , (6.24)

the SG PV equation (6.23) can be written in terms of Φs as

�s

(
1 +

Φs
r

r

)2

= Φs
rr + Φs

ẑẑ + Φs
rrΦ

s
ẑẑ − Φs2

rẑ +
Φs

r

r

[
1 + 2

Φs
r

r
+ 3Φs

ẑẑ

(
1 +

Φs
r

r

)]
. (6.25)

Looking for radial solutions Φs(r, ẑ) = F (R(r, ẑ)), �s(R) = �0 for R < R0, and defining
G(R) ≡ F ′(R)/R to simplify the notation, we obtain

(1 + G)2�0 = F ′′ + 2G + 6G2 + 3G3 + G
(
F ′′ − G

) [
1 +

3ẑ2

R2
(1 + G)

]
. (6.26)

This equation admits radial solutions when F ′′ = G, which correspond to the interior
solution

Φs
i (R) = 1

2
CsR2, (6.27)

for which

Φs
rr = Φs

ẑẑ =
Φs

r

r
= F ′′ =

F ′

R
= G = Cs, Φs

rẑ = 0. (6.28)
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Figure 10. Distribution in the (r, ẑ)-plane of ζ̃ s (�= 2 × 10−2) in the case of �s = 0.5.

Replacing (6.27) into (6.26) and grouping terms in powers of Cs we obtain the cubic
equation for the coefficient Cs

3Cs3 + (6 − �0)C
s2 + (3 − 2�0)C

s − �0 = 0. (6.29)

Surprisingly, this equation can easily be rewritten in terms of its roots and directly
solved, (

Cs − �0

3

)
(Cs + 1)2 = 0, ⇒ Cs(�0) =

�0

3
. (6.30)

The unique solution above follows since Φs
ir 	= −r ⇒ Cs 	= −1. Thus, the SG pressure

anomaly in the vortex interior has the same relation with the SG PV as the QG
pressure anomaly with the QG invariant (5.9c).

As happens with the PV inversion equation for the total (4.6) and QG (5.19)
dynamics, the exterior solution of the SG PV inversion equation (6.25) does not
admit a radial dependence, which makes it difficult to find an analytical solution.
Instead, (6.25) can be solved numerically using an iterative procedure similar to the
one used to solved the total PV inversion (4.6). Figure 10 shows the distribution of ζ̃ s

obtained from the numerical solution Φs(x, ẑ) with �s(R > 0.5) = 0.5 which, though
qualitatively similar to the ζ̃ s generated by �s

I (R > 0.5) = 0.5 (figure 9a), does not
have a surface relative extremum.

7. Approximated PV equations
In the two previous sections we have considered PV and material invariant equations

consistent with the QG and SG approximations to the full dynamics. Here we explore
a different approach and, instead of assuming first the approximations at the level of
the dynamical equations, and obtaining therefrom the approximated PV equation, the
approximations are taken directly from the full PV equation (4.6) without concern
for their corresponding dynamical equations.

7.1. Quasi-linear approximation

This approximation is based on the order of magnitude of the different terms in
(4.6), for moderate PV anomalies � ∼= 0.5, which suggest that the linear terms are,
by one order of magnitude, larger than the nonlinear ones (figure 5). Neglecting the
nonlinear terms on the right-hand side of (4.6) yields the approximated PV equation

Π0

√
1 + 4

Φa
r

r
= 1 + Φa

rr + Φa
ẑẑ + 3

Φa
r

r
. (7.1)
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This simplified PV equation admits radial solutions Φa(r, ẑ) = F (R(r, ẑ)) that must
satisfy

Π0

√
1 + 4

F ′

R
= F ′′ + 1 + 4

F ′

R
. (7.2)

As usual, the interior solution Fi is

Fi(R) = 1
2
CaR2, (7.3)

where Ca , found by solving a quadratic equation, is

Ca(�0) = − 1
5

+ Π0

2Π0 +
√

5 + 4Π2
0

25
, (7.4)

where Π0 = 1 + �0. Above, the positive root of the solution has been taken which
ensures that Ca(0) = 0, that is Fi(R) = 0 when �0 = 0.

To find the exterior solution Fe we define the auxiliary function

h(R) ≡
√

1 + 4
F ′

e(R)

R
. (7.5)

in terms of which (7.2) simplifies to the separable equation

dh

dR
=

−5h2 + 4h + 1

2h

1

R
= f1(h)f2(R), (7.6)

which can be integrated ∫
2h

−5h2 + 4h + 1
dh =

∫
dR

R
. (7.7)

The roots of f1(h) = 0 are {h1, h2} = {−1/5, 1}, and cause no singularity problems
since h > 0 and we expect F ′

e 	= 0. The first integral above can be simplified to

−1

5
ln(5h2 − 4h − 1) − 4

52

∫
dh

(h − h1)(h − h2)
. (7.8)

Using the integral rule,∫
dx

ax2 + bx + c
=

1√
b2 − 4ac

ln

(
2ax + b −

√
b2 − 4ac

2ax + b +
√

b2 − 4ac

)
, (7.9)

(7.6) can be fully integrated yielding the algebraic equation

(h + 1/5)(h − 1)5 = (R1/R)15. (7.10)

In terms of Y (R) ≡ h(R) − 1 = 4F ′
e(R)/R, the sextic equation (7.10) can be rewritten

as

Y 6 + 6
5
Y 5 =

(
R1

R

)15

. (7.11)

The integration constant R1 can be obtained by imposing the continuity of F at
R = R0, that is, F ′

i (R0) = F ′
e(R0), which implies that√

1 + 4
F ′

i (R0)

R0

=
√

1 + 4Ca =

√
1 + 4

F ′
e(R0)

R0

= h(R0), (7.12)
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(a) (b) (c)

Figure 11. Vertical distributions of (a) ṽa as defined by (7.14a) with �0 = 0.5 and R0 = 0.5
(�= 5 × 10−2), (b) ṽ − ṽa as defined by (7.14a) (�= 10−2), and (c) ṽ − ṽs with �0 = 0.5 and
ṽs computed from (6.25) and (6.3) (�= 5 × 10−4).

and therefore from (7.10) we finally obtain R1 as a function of �0 and R0,

R1(�0, R0) = (
√

1 + 4Ca(�0) + 1/5)1/15(
√

1 + 4Ca(�0) − 1)1/3R0. (7.13)

We note that the exterior solution depends on the interior solution through the
coefficient Ca . Alternatively, we may use the exact solution Φi (4.13) for the vortex
interior, and the approximate solution Φa

e for the vortex exterior. In this case Ca in
(7.13) must be replaced with C given by (4.16).

Unfortunately, the sextic equation (7.11) cannot be solved in radicals for every
value of R, though it can be solved for special values of R (e.g. Head 1979). However,
Y depends only on R and therefore numerical solution of (7.11) is easier than the
two-dimensional equation (4.6) for Φ(r, ẑ). Once Y (R) is known it is necessary to
define the velocity ṽa and Da in terms of Φa . A simple way of doing this is to use the
same relations in terms of Φ (4.3),

ṽa ≡ r

2

(√
1 + 4

Φa
r

r

)
=

h − 1

2
r =

Y

2
r, Da ≡ −ε2Φa

z = −ε(Y + 2)Y

4
ẑ. (7.14a, b)

so that Y (r)/2 can be interpreted as the angular velocity of the fluid particle in the
vortical flow. The velocity ṽa , obtained from the numerical solution of (7.11) with
Ca → C, is shown in figure 11(a). The comparison with the exact v (obtained from
the numerical solution of Φ) shows typical differences of one order of magnitude
smaller than |v| (figure 11b). The difference v − vs , where vs is the non-radial
numerical solution for �s(R > R0) = 0.5 (figure 11c), is smaller, typically two orders
of magnitude smaller than |v|.

7.2. Linear approximation

In this approximation, the square root in (7.1) is linearly approximated using the first
two terms in the Taylor series √

1 + 4
Φr

r
∼= 1 + 2

Φr

r
. (7.15)

This leads to the radial equation for Φl(r, ẑ) = F (R(r, ẑ))

F ′′ + 2
F ′

R
(1 − �0) = �0, (7.16)
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which has the interior solution

Φl
i (R) = 1

2
ClR2, Cl(�0) =

�0

3 − 2�0

. (7.17a, b)

The exterior equation (with �0 = 0) is identical to the exterior QG equation ((5.8c)
with �

q
I = 0). Integration of this equation, and imposing continuity of F ′ at R = R0

to obtain the integration constant, yields the exterior solution

Φl
e

′(R) = C∗ R3
0

R2
, (7.18)

where C∗ is either the exact C, (4.16), or the linear Cl , (7.17b). The external linear
solution for Φl

e
′ has therefore the same R−2 dependence as the QG solution Φq

e
′,

(5.11b).

7.3. Upper and lower bound solutions

On rewriting the exact PV equation (4.12) as

Π0

√
1 + 4

F ′

R
= F ′′ +

(
1 + 2

F ′

R

)2

+
F ′

R

(
F ′′ − F ′

R

)
R2 + 3ẑ2

R2
, (7.19)

approximate radial solutions can be found solving special cases of the family of
equations

Π0

√
1 + 4

F ′

R
= F ′′ +

(
1 + 2

F ′

R

)2

+
F ′

R

(
F ′′ − F ′

R

)
Tγ (r, ẑ)

R2
. (7.20)

Above

Tγ (r, ẑ) ≡ R2 + 3ẑ2 + γ 3
2

{
R2 + γ (r2 − ẑ2)

}
, (7.21)

so that with T0(r, ẑ) = R2 + 3ẑ2 we recover (7.19), while T−1(r, ẑ) = R2 and T+1 = 4R2

are radial terms such that T−1 � T0 � T1. Thus, (7.20) admits radial solutions for
γ = {−1, 1}. As in the previous section, we define h2 ≡ 1 + 4F ′/R. As occurs with
(7.2), the differential equation (7.20) can be analytically integrated, but the solution
h cannot be analytically expressed as a function of R. The integration of (7.20) for
γ = −1 and γ = +1 (Appendix) leads, respectively, to

R−(h)

R0
−

= f−(h) =
exp
{

1

2
√

15
arctan

(
2h+1√

15

)}
(h − 1)1/3(h2 + h + 4)1/12

, (7.22a)

R+(h)

R0
+

= f+(h) =
exp
{

− 1√
15

arctan
(

2h+1√
15

)}
(h − 1)1/3(h2 + h + 4)5/6

, (7.22b)

where the constants R0
± are obtained imposing continuity of h at R = 0,

R0
± =

R0

f±(h0)
, h0 =

√
1 + 4C. (7.23)

We note that the interior solution Fi satisfies F ′′ = F/R so that the last term in (7.20)
is zero, and Fi is unique, independent of Tγ . The radial solutions (7.22), plotted as
functions of (h2 − 1)/4 = F ′/R in figure 12(a), are lower and upper bounds to the
numerical solution Φr (r, ẑ)/r of the exact equation (4.6). The lower bound R− is very
similar to the linear solution Φl ′/R (figure 12a).
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Figure 12. (a) Solution Φa(R)/R (×102, dashed line) as deduced from (7.10), and linear
solution Φl(R)/R (×102, continuous line) given by (7.18). (b) Solutions R− and R+ and in the
horizontal axis) given by (7.22) but as a function of F ′/R = (h2 − 1)/4 (×102, vertical axis).
In (a) and (b), the boundary condition for the different F ′/R at R = R0 is that corresponding
to the exact interior solution, thus in fact using Ca → C and Cl → C. The scatterplot of the
numerical solution Φr (r, ẑ)/r of the exact equation (4.6) versus R (as in figure 5) is included in
both figures for comparison.

8. Concluding remarks
In this paper, we have explored the concept of piecewise constant symmetric finite-

size PV vortices as a possible alternative to point vortices in inertially and statically
stable geophysical flows. Solutions, either analytical or numerical, for the pressure
gradient as a function of the PV anomaly, or the respective material invariant, and
radius of the PV ball have been found. An exact analytical solution for the non-radial
pressure gradient in the vortex exterior in the case of the full (Boussinesq and f -plane
approximations) dynamics remains, however, as an important theoretical challenge.
These PV ball vortices may be particularly useful in numerical simulations where
it can be assumed that the velocity shear is numerically meaningless at the small
subgrid scales. Under these circumstances it may be justified that the PV balls with a
radius much smaller than the grid size are simply advected, but not deformed, by the
background flow, so that the PV balls remain always spherical. These PV balls will
not cause static or inertial instabilities even when a numerical grid point is located
inside the PV sphere. Investigation along this numerical research line is the next step.

I am grateful to T. Piezas for his help on the sextic equation (7.11).

Appendix. Integration of (7.22)
For γ = −1 and h2 ≡ 1 + 4F ′/R, (7.22) reduces to the separable equation

8 − 2h(h2 + 3) = (h2 + 3)h′R, (A 1)

which can be integrated

−1

2

∫
h2 + 3

h3 + 3h − 4
dh =

∫
dR

R
. (A 2)
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The integral on the left-hand side is

− 1
2

∫
h2 + 3

h3 + 3h − 4
dh = − 1

6
ln(h3 + 3h − 4) −

∫
dh

h3 + 3h − 4
. (A 3)

To integrate the last term we factorize h3 + 3h − 4 = (h − 1)(h2 + h + 4), and noticing
that the roots of h2 + h + 4 =0 are complex we use the integral rule∫

dx

ax2 + bx + c
=

2√
4ac − b2

arctan

(
2ax + b√
4ac − b2

)
, (A 4)

which yields∫
dh

h3 + 3h − 4
= ln

[
(h − 1)1/6

(h2 + h + 4)1/12

]
− 1

2
√

15
arctan

(
2h − 1√

15

)
. (A 5)

Case γ = 1 is solved in a similar way.
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